SYST/OR 699 Final Project Modeling Cross-Agency Effectiveness of Science, Technology, Engineering and Mathematics (STEM) Programs

May 9, 2014

<u>Project Sponsor</u> The MITRE Corporation Tyndall Traversa Rob Brown <u>GMU Team Members</u> Jeff Chittim Paul Dolan Syed Jaffrey

What is a Cross-Agency Goal?

- Approach used to accelerate progress on Presidential priority areas
- To ensure effective leadership and accountability across Federal Government

Mission	Management		
Cybersecurity	Effectiveness	Customer Service	
Climate Change	Ellectiveness	Smarter IT Delivery	
Insider Threat and Security Clearance		Strategic Sourcing	
Job-Creating Investment	Efficiency	Shared Services	
Infrastructure Permitting Modernization	Enciency	Benchmark and Improve Mission-Support Operations	
STEM Education	Foonomic Crowth	Open Data	
Service Members and Veterans Mental Health		Lab-To-Market	
		People and Culture	

Source: Performance.gov

Problem Statement & Objectives

Problem:

- Government lacks way to assess effectiveness towards meeting cross-agency goals.
- Limited performance data is publicly available.

Objectives:

- Develop a prototype model driven approach to increase proportion of STEM graduates.
- Advise agencies regarding opportunities to improve investments and performance management.
- Identify the challenges in developing an effective methodology, data inadequacies and critical needs, and recommended methodology improvements.

Scope Formulation

- Alignment of scope with STEM goal
 - 1 Million more STEM undergraduate degrees in 10 years (2010-2020)
- Factors affecting student attrition and persistence
- Create a model of the STEM student pipeline to assess the STEM cross-agency goal

STEM Funding Hierarchy

Critical Literature Review

STEM Programs

- Institutional Grants
- Scholarships to Students (Pell)
- Engagement and Learning/Skill Development
- No standardized process to evaluate STEM Effectiveness (one-time studies)
- STEM program performance needs to be linked student level factors

Source: GAO Report, April 2012

System Modeling

- Why a System Dynamics Model?
 - Capture non-linearity
 - Considers causality and delayed effects
 - Lack of data
- Factor based model of persistence and attrition of students in STEM pipeline
- Focus on undergraduate students
- Time-based simulation (10 years)

System Dynamics Model

System Dynamics Model

System Dynamics Model

Parameter Formulation

 Parameters which affect Enrollment, Retention or Switching Rates

*

General parameter format:

Percentage of Population Affected Rate effect as a function of Investment

Parameter Formulation

Enrollment Rate Effect due to STEM Scholarships:

Scholarships for Service

- Hollings
 Undergraduate
 Scholarship Program
- Stokes Educational Scholarship Program
- Aeronautics
 Scholarship
- Federal Cyber Service

STEM Scholarship Programs

- DoD SMART Scholarships
- Dept of ED SMART Scholarships
- Undergraduate Scholarship Program for Individuals from Disadvantaged Backgrounds
- NSF STEM Scholarships (S-STEM)

Programs Studied: 18 Programs >\$750Million in FY10 funding

Research Experiences for Undergraduates (REU)

- Awards to Stimulate & Support Undergraduate Research Experiences (ASSURE)
- Naval Research Enterprise Program (NREIP)
- Science Undergraduate Laboratory Internships (SULI)
- Undergraduate Student Research Project (USRP)
- Summer Undergraduate Research Fellowship Program (SURF)

Other STEM Education Programs

- Upward Bound Math Science Program
- Global Climate Change Education
- Motivating Undergraduates in Science & Technology
- University Transportation Centers Program

Study Limitations

- Lack of data
 - Project scope does not include data collection
 - Program effectiveness and performance
 - Factors affecting attrition and persistence
 - Publically available data only

Model Assumptions

- Complicating factors intentionally omitted
 - STEM Teacher Pipeline
 - Demographics
 - Cultural aspects
 - K–12 Experiences
 - Non-governmental STEM initiatives
- Stability of STEM 2010 program inventory
- Constant factor effects during simulation*
- Combined data across recent fiscal years to build model
- Not considering seasonality of enrollment

Base Case Output

- 30 Runs per model variant
- All random variables independent
- Quarter year time steps

Hypotheses

One of these factors is the most important to STEM Persistence Rates:

- 1. Student Scholarship Funding
- 2. Research Experience for Undergraduates (REU)
- Number of Students Receiving Scholarships
 - Size of scholarship affects student persistence

Analysis Cases

- Return On Investment (ROI)
 - Dollars Invested per Students Persisting
 - STEM Scholarships Investment
 - REU Expansion
- Assumption Testing
 - How does the size of the scholarship affect Student Persistence?
 - Case 1: Persistence increases with scholarship size
 - Case 2: Persistence depends only on the number of students getting scholarships

Return on Investment

- If funding is increased in 2015 by a fixed amount, what is this effect?
- Compare Scholarship and REU cases to the Base Case using the Tukey Test
 - Obtained 95% CI on the mean of the difference

 $ROI = \frac{\# Persisters in variant model - \# Persisters in base model}{Funding Difference}$

ROI – Results

	Dollars per Student								
		Mean	L Bound			U Bound			
REU	\$	4,938.74	\$	4,648.76	\$	5,267.30			
Scholarships	\$	2,742.70	\$	2,355.25	\$	3,282.74			

* p-value < 0.001

Impact of Scholarship Investment

Impact of REU Investment

Assumption Testing

- How does the size of the scholarship affect Student Persistence?
- Alter model to use a fixed persistence rate for each student receiving a STEM scholarship

(Noel-Levitz, 2011), Targeting Financial Aid for Improved Retention Outcomes
 (Bettinger, 2004), How Financial Aid Affects Persistence

Assumption Testing Results

2500000

Tukey's Test

 Generated a 95% CI on the mean of the difference between Total STEM Graduates 2010 – 2020

Gra	aduates 20	010 - 2020)		2400000	
	Total STEM Graduates (2010-2020)					
	Mean	L Bound	U Bound	s	0	
Fixed - Variable	293983	260295	327670	Grad	000 -	
		* p-value	< 0.001	STEM	230	
 Current scholarship situation favors fixed persistence rate model 					2200000 I	
p -					00000	
			Levene's Test]	3	
			p-value			<u> </u>

0.2385

Total STEM Grads 2010-2020

Base

Fixed

Performance Management & Data Conclusions

- Agencies should base STEM program goals on intersection of agency goals with STEM goals
- Gov't needs to report student level outcomes to facilitate federal level decision making
- Decouple STEM funding from non-STEM funding in broad-based programs

Modeling and Analysis Conclusions

- Scholarships provide a higher ROI than REUs
 - ~\$2.7B in additional STEM Scholarship funding would meet STEM Cross-Agency Goal (1,000,000 more students in 10 Years)
- Proportion of STEM students receiving scholarships has a greater affect on persistence than scholarship size per student

Further Research

- Areas of potential model expansion:
 - Incorporate more of the STEM pipeline
 - STEM Infrastructure Investments
 - STEM Curriculum Enhancements
- What is the effect of private sector STEM outreach programs?
- Investigate social factors relating to STEM attrition.

Questions?

- Special Thanks to:
 - The MITRE Corporation
 - Tyndall Traversa
 - Rob Brown
 - Dr. Laskey

